Audit Report

cw-hyperlane

v1.0
February 13, 2024

Table of Contents

Table of Contents
License
Disclaimer
Introduction
Purpose of This Report
Codebase Submitted for the Audit
Methodology
Functionality Overview
How to Read This Report
Code Quality Criteria
Summary of Findings
Detailed Findings
1. Risk of Denial-of-Service of the merkle hook

O© 0 N N O OO0 &~ MN

- =
N O

12

2. Lack of info.funds transfer to postDispatch leads to failure of subsequent operations

13
3. Resource intensive Multisig ISM verify_message query

4. Warp contracts do not specify hook in transfer_remote function

5. Multisig ISM may cause out-of-gas errors

6. Static multisig threshold design presents scalability concerns
7. A zero threshold will make it impossible to verify a message

8. Pausable endpoint not exposed

9. Strategic planning is crucial for Mailbox contract upgrades
10. Missing address validation and normalization

11. Lack of input validation

12. Aggregate hook does not consider alternate denominations

13. Missing entry point to remove ISM entries

14. Maintainability considerations for Merkle tree
15. Misleading ContractErrors and events emitted
16. Remove debugging messages

17. Remove duplicated code

18. Unused events

19. Mailbox should explicitly block same domain dispatch messages

20. Usage of panics for error handling

21. Lack of attached funds may cause inefficiencies

22. Storage elements are not all available through queries
23. Potentially misleading attribute emitted

24. Remove unused config for Multisig ISM

25. Empty attributes

26. Fix spelling errors

13
14
14
15
15
16
16
17
17
18
18
19
19

20

20
21
21
21

22

22

23

23

23

24

27. “Migrate only if newer” pattern is not followed
28. Usage of vulnerable dependencies

24
24

License

©@ ® 06

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES
4.0 INTERNATIONAL LICENSE.

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

Disclaimer

THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND.

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

THIS AUDIT REPORT IS ADDRESSED EXCLUSIVELY TO THE CLIENT. THE AUTHOR AND HIS
EMPLOYER UNDERTAKE NO LIABILITY OR RESPONSIBILITY TOWARDS THE CLIENT OR
THIRD PARTIES.

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

This audit has been performed by
Oak Security

h : k rity.i
info@oaksecurity.io

https://oaksecurity.io/
mailto:info@oaksecurity.io

Introduction

Purpose of This Report

Oak Security has been engaged by Abacus Works Inc to perform a security audit of
cw-hyperlane.

The objectives of the audit are as follows:

1. Determine the correct functioning of the protocol, in accordance with the project
specification.

2. Determine possible vulnerabilities, which could be exploited by an attacker.
3. Determine smart contract bugs, which might lead to unexpected behavior.
4. Analyze whether best practices have been applied during development.
5. Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit

The audit has been performed on the following target:

Repository https://github.com/many-things/cw-hyperlane

Commit ac8cd58cbbcb5a831lbf4b36de5f8a8d8lfdedafla

Scope The scope of this audit included all contracts and packages within the
cw-hyperlane repository.

Fixes verified 659594588d780b1a32d644b903fc6bf321a9%b632d

at commit
Note that changes to the codebase beyond fixes after the initial audit
have not been in scope of our fixes review.

https://github.com/many-things/cw-hyperlane

Methodology

The audit has been performed in the following steps:

1.

Gaining an understanding of the code base’s intended purpose by reading the
available documentation.
Automated source code and dependency analysis.
Manual line-by-line analysis of the source code for security vulnerabilities and use of
best practice guidelines, including but not limited to:

a. Race condition analysis

b. Under-/overflow issues

c. Key management vulnerabilities
Report preparation

Functionality Overview

Hyperlane is a permissionless interoperability layer built for modular blockchains.
cw-hyperlane enables chains supporting CosmWasm to integrate with the Hyperlane protocol.
This audit covers the functionality associated with Hyperlane’s core, hooks, isms, and warp
contracts.

How to Read This Report

This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

Major A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not strictly
necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged, or Resolved.

Note that audits are an important step to improving the security of smart contracts and can
find many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria
below.

Note that high complexity or low test coverage does not necessarily equate to a higher risk,
although certain bugs are more easily detected in unit testing than in a security audit and vice
versa.

Code Quality Criteria

The auditor team assesses the codebase’s code quality criteria as follows:

Criteria

Code complexity

Code readability and clarity

Level of documentation

Test coverage

Status

Comment

The scope of the audit covered a
technical implementation with many
contracts and complex interactions.

The code was generally readable,
but did not have sufficient code
commenting and had some
potentially misleading variable
naming.

While the Hyperlane protocol has
extensive documentation,
cw-hyperlane did not have specific
documentation to detail the
CosmWasm implementation.

Test coverageis in 75.1%,
assessed with llvm-cov

Summary of Findings

No

10

11

12

13

14

15

16

17

18

19

Description
Risk of Denial-of-Service of the merkle hook

Lack of info. funds transfer to postDispatch
leads to failure of subsequent operations

Resource intensive Multisig ISM
verify message query
Warp contracts do not specify hook in

transfer remote function
Multisig ISM may cause out-of-gas errors

Static multisig threshold design presents scalability
concerns

A zero threshold will make it impossible to verify a
message

Pausable endpoint not exposed

Strategic planning is crucial for Mailbox contract
upgrades

Missing address validation and normalization

Lack of input validation

Aggregate hook does not consider alternate

denominations
Missing entry point to remove ISM entries

Maintainability considerations for Merkle tree

Misleading ContractErrors and events emitted
Remove debugging messages

Remove duplicated code

Unused events

Missing entry point to remove ISM entries

10

Severity
Major

Major

Informational
Informational
Informational
Informational

Informational

Status
Acknowledged

Resolved

Acknowledged

Acknowledged

Resolved

Resolved

Resolved

Resolved

Acknowledged

Partially
Resolved

Resolved

Resolved

Resolved

Partially
Resolved

Resolved
Resolved
Resolved
Resolved

Resolved

20

21

22

23

24

25

26

27

28

29

Mailbox should explicitly block same domain
dispatch messages

Usage of panics for error handling
Lack of attached funds may cause inefficiencies

Storage elements are not all available through
queries

Potentially misleading attribute emitted
Remove unused config for Multisig ISM
Empty attributes

Fix spelling errors errors

“Migrate only if newer” pattern is not followed

Usage of vulnerable dependencies

11

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Acknowledged

Resolved
Resolved

Partially
Resolved

Resolved
Resolved
Resolved
Resolved
Acknowledged

Acknowledged

Detailed Findings

1. Risk of Denial-of-Service of the merkle hook

Severity: Major

The PostDispatch execute message in contracts/hooks/merkle/src/lib.rs:80
is callable by any sender and results in an insertion into the Merkle tree so long as the
message matches the latest dispatch id. The latest dispatch id is a known
value that can be queried from the mailbox. This will allow attackers to spam the Merkle tree
by repeatedly calling PostDispatch with duplicates of the latest dispatched message. The
duplicated message identifiers are not rejected and pollute the tree.

Consider the case of inserting into a Merkle tree 1,000,000th leaf. The Merkle tree, including
its intermediate nodes (one less in number than its leaves), amounts to 1,999,999 32-byte
nodes, totaling 63,999,968 bytes. The default Cosmos SDK rate for smart contract storage
writes is 30 gas per byte, plus a flat write fee. Consequently, the gas required for storing a
Merkle tree with 1,000,000 message IDs is approximately 1,919,999,040.

The actual monetary cost varies with the network's specific conditions and load at any given
time. For example, in Osmosis, the minimum gas price can be 0.0025 uosmo, and the average
is around 0.025 uosmo. Assuming an OSMO price of 0.33 USD, the minimum cost for this
operation would be about 1.5 USD, and the average cost would be about 15 USD. The tree
size grows linearly with its leaves. Thus, for the billionth message, the minimum gas cost could
surpass 1,500 USD, while the average fee may reach around 15,610 USD.

As a consequence, the cost of operating the hook grows proportionally to the amount of
messages processed and can reach levels unacceptable for users. A malicious party could
deliberately invest funds to render the hook inoperative.

Recommendation

We recommend optimizing the Merkle tree structure for append operations, allowing the
addition of new elements without the need to fully load and rewrite the unchanged portions of
the tree. Additionally, rejecting the duplicated messages and whitelisting the callers of
PostDispatch is recommended to protect the hook from attackers exploiting its escalating
operational costs.

Status: Acknowledged

The client has acknowledged this finding, stating that the agent is resilient to duplicate
insertions to the merkle tree. The client also states that this implementation serves to protect
the merkle tree from spam at the agent level rather than the contract level as discussed in the
recommendation.

12

2. Lack of info. funds transfer to postDispatch leads to failure
of subsequent operations

Severity: Major

The TransferRemote message allows funds to be transferred via callbacks through the
Mailbox contract directly to the destination chain if the route for dest domain has been
found.

However, when calling the mailbox::dispatch method in
contracts/warp/native/src/contract.rs:204, no funds are transferred as
info.funds that could cover the costs of gas of subsequent transactions and calls.
Therefore, they will return errors and revert, making the functionality unusable.

This vulnerability was also independently identified by the client during the audit and resolved
by introducing the "approve and transfer from" method.

Recommendation

We recommend ensuring that the contract properly handles funds during the message
dispatch.

Status: Resolved

3. Resource intensive Multisig ISM verify message query

The Multisig ISM contract includes an intensive computation for verify message in
contracts/isms/multisig/src/query.rs:19-66. The verification performs a linear
pass through all provided signatures, recovering public keys from them, and performing a
nested linear scan to find matching validators. This results in a quadratic computational
complexity of the verification. Furthermore, two resource-intensive operations,
secp256kl verify and eth addr, are executed for each signature. The code involved in
this issue has been updated in Phase 2 of this audit but the issue remains.

Heavy computations in smart contracts lead to high gas fees and increase the risk of
Denial-of-Service attacks. Note that queries to external contracts in CosmWasm impose gas
restrictions, so the caller of this query may experience out-of-gas errors. The result of this is
that messages may fail to be processed by the mailbox if the query exceeds wasmd smart
query limits.

Recommendation

We recommend offloading as much computation as possible from the smart contract to
relayers. The contract should only verify already processed data. Relayers can perform
off-chain matching and submit validator indexes along with the signatures. This approach
would simplify the verification process to a straightforward linear scan over the validators

13

vector within the contract. Alternatively, relayers could also handle the recovery of public keys
from signatures and convert them to the required format. This may significantly reduce the
computational burden on the contract, although it would increase the transaction size due to
additional data being submitted by relayers.

Status: Acknowledged

The client states that they do not expect the computation to be problematic for the expected
signature validation scenarios.

4. Warp contracts do not specify hook in transfer remote
function

The transfer remote function in both warp contracts currently sends a mailbox dispatch
message with a hook parameter hardcoded to None. This undermines the design of the
protocol by not utilizing the hooks feature.

This issue was also independently identified by the client during this audit.
Recommendation

We recommend setting the hook value in the transfer remote function call in both warp
contracts.

Status: Resolved

5. Multisig ISM may cause out-of-gas errors

The Multisig ISM contract contains the enroll validator function in
contracts/isms/multisig/src/execute/validator.rs:26. This function exhibits
inefficiencies that escalate costs as the number of validators rises:

1. validators.0.iter performs a linear pass through all already enrolled
validators.

2.validators.0.sort by operates with O(N logN) complexity, where N is the
total number of validators.

The same inefficiencies impact the unenroll validator function in this file.

This issue is classified with minor severity since only the owner has the authority to enroll and
unenroll validators.

14

Recommendation

We recommend keeping the validators vector sorted in the smart contract's storage,
eliminating the need for explicit sorting.

With a pre-sorted vector:

1. Searches for duplicates can be executed in O(log N) using binary search.

2. New entries can be inserted in O(N) by locating the insertion point and shifting the
vector's tail. Advanced data structures can further reduce insertion complexity to
O(logN). Both of these ways to insert an entry ensure the collection of validators
remains sorted post-insertion, effectively eliminating the computationally expensive
sorting step.

Status: Resolved

6. Static multisig threshold design presents scalability concerns

The Multisig ISM (Interchain Security Module) relies on a static threshold parameter to verify
messages based on the number of validators that have verified the message. This
parameter's storage is defined on contracts/isms/multisig/src/state.rs:15asa
mapping from secured domains to threshold values. A fixed threshold number is not reliable
because as the number of validators increases, the probability of collusion or leaked keys
also rises. Therefore, the threshold should always be adjusted according to the current
number of validators.

Recommendation

We recommend using a proportion of the validators as the threshold instead of a fixed
threshold amount. This approach ensures a consistent level of security regardless of the
number of validators.

Status: Acknowledged

The client states that this will be managed at the operational level. ISM owners will be given
the discretion to manage this parameter at their discretion.

7. A zero threshold will make it impossible to verify a message

The aggregate ism contract allows the minimum value of the THRESHOLD state parameter to
be set to zero in contracts/isms/aggregate/src/lib.rs:55. In the functions
responsible for verifying the message in
contracts/isms/aggregate/src/lib.rs:126-128 and

15

contracts/isms/multisig/src/query.rs:55-59, after obtaining confirmation from
the first validator, the threshold value is decreased by one. Since the value was initially equal
to zero, an underflow occurs, which will result in a panic. As a consequence, this operation
cannot be completed successfully, leading to a state of unusability.

Recommendation

We recommend enforcing a minimum value for the THRESHOLD parameter such that at least
one validator is required to verify the message.

Status: Resolved

8. Pausable endpoint not exposed

The mailbox contract is instantiated with the pausable feature in
contracts/core/mailbox/src/contract.rs:39. However, the pausable-related
execute entry points are not exposed in the execute function in lines 45-64. Therefore, it is
not possible to pause the contract after being instantiated, rendering this security mechanism
ineffective.

Additionally, the contract is instantiated with pausable set to false. To ensure no users
attempt to pass the dispatch or process messages before the default ism,
default hook, and required hook have been set, it could be beneficial to instantiate
the contract in a paused state and once the initial setup occurs unpause the contract.

Recommendation

We recommend exposing the pausable execute entry points, as well as instantiating the
contract in a paused state.

Status: Resolved

9. Strategic planning is crucial for Mailbox contract upgrades

The check at contracts/core/mailbox/src/execute.rs:217-223 rejects
messages from older Mailbox versions. Upgrading the destination contract with messages
in transit would lead to failure of their delivery albeit being paid and verified.

To manage this, dispatching new messages might be temporarily halted using the Pausable
hook. For domain-specific pausing, the Router hook can be employed. However, as
Mailbox instances across different domains could have separate ownership, coordinated

16

upgrades necessitate prior agreements among all involved parties for synchronous lane
updates.

Recommendation

When deploying a Mailbox, we recommend configuring sending messages only to
Mailbox contracts managed by the same party. An alternative solution may be supporting
the reception of messages meant for a previous version.

Status: Acknowledged

10. Missing address validation and normalization

Multiple contracts within the scope of this audit lack address validation or normalization steps.
Some of the affected instances cause just a transaction failure when an incorrect address is
provided, wasting gas. But others would render some features unusable until a valid address
is recorded.

The following instances were found:

e dispatch msg.recipient addr in
contracts/core/mailbox/src/execute.rs:151-156. Although it is not
possible to validate the address as it belongs to a different chain, the address could
be normalized to lowercase.

recipientin contracts/core/mailbox/src/execute.rs:215
msg.recipientincontracts/hooks/routing-custom/src/lib.rs:185
refund addressincontracts/igps/core/src/execute.rs:114

router in packages/router/src/lib.rs:98

set.route in packages/router/src/lib.rs:74
Recommendation
We recommend implementing the fixes mentioned above to improve address handling.

Status: Partially Resolved

11. Lack of input validation

Multiple contracts within the scope of this audit lack input validation, for example of HRP, the
gas token, and the oracle configurations. Invalid inputs can render the contracts unusable
until a correct value is provided. In some cases parameter updates require deploying a new
contract.

17

msg.hrpin contracts/core/va/src/contract.rs:46
msg.gas_tokenincontracts/igps/core/src/contract.rs:34
msg.hrpin contracts/igps/core/src/contract.rs:35
msg.hrpin contracts/core/mailbox/src/contract.rs:27
msg.hrpin contracts/isms/multisig/src/contract.rs:35

configincontracts/igps/oracle/src/contract.rs:54 and 71
Recommendation
We recommend:

e Implementing a best-effort validation on HRP so it only contains lowercase letters.
e Querying the gas token supply to ensure that it is a valid token.
e Checking that the provided oracle config does not include an exchange rate of zero.

Status: Resolved

12. Aggregate hook does not consider alternate denominations

The quote dispatch function in contracts/hooks/aggregate/src/lib.rs:147
does not account for the possibility of having gas coins of different denominations. It
incorrectly assumes that all gas coins are of the same denomination, which cannot be
guaranteed. Ultimately this could cause an error further in the execution of the dispatch when
the necessary funds are not present.

Recommendation

We recommend ensuring that all gas denominations are the same as the denomination of the
gas_ total being calculated.

Status: Resolved

13. Missing entry point to remove ISM entries

The routing contract implements a Set entry point in
contracts/isms/routing/src/contract.rs:55 to add ISM entries to the storage.
However, there is no Remove entry point to delete an undesired entry.

Recommendation
We recommend implementing a Remove entry point to delete routes from the storage.

Status: Resolved

18

14. Maintainability considerations for Merkle tree

The Merkle package in packages/interface/src/types/merkle. rs contains several
issues not posing any immediate threat, but potentially affecting future versions of the system.

1. In line 11, the type of the constant ZERO HASHES is incorrectly parameterized by
constant HASH LENGTH. The number of hashes should relate however to the Merkle
tree's depth, not the hash value length. Currently, changing TREE DEPTH results in
runtime errors during Merkle tree operations.

2. In line 8, the constant MAX LEAVES is incorrect. The maximum number of a Merkle
tree's leaves must be a power of 2. The impact is that the very last leaf slot cannot be
filled. For example, if TREE DEPTH is set to 3, the 8th value is wrongly rejected by the
tree.

Recommendation
We recommend implementing the following fixes:

1. The correct type signature for the constant ZERO HASHES should be [&str;
TREE DEPTH].

2. The correct value for MAX LEAVES should be 2 ul28.pow (TREE DEPTH as
u32).

3. Implementing unit tests for the Merkle tree is advisable, given its complexity and the
optimization evident.

4. For better efficiency, using byte vectors for ZERO BYTES and ZERO_HASHES is
recommended over string types.

Status: Partially Resolved

15. Misleading ContractErrors and events emitted

Severity: Informational

The codebase contains some events and errors that may mislead users. Misleading errors
have been found in:

e The announce function in contracts/core/va/src/contract.rs:145-148
returns Unauthorized when REPLAY PROTECITONS contains replay id
already.

® FExecuteMsg::PostDispatch in
contracts/hooks/merkle/src/lib.rs:94-98 returns Unauthorized when
latest dispatch idis notthe same as decoded msd.id.

Additionally, the SetRemoteGasData function in
contracts/igps/oracle/src/contract.rs: 63 does not emit the "owner" attribute.

19

This is different from the SetRemoteGasDataConfigs function, which contains the same
functionality, but accepts a vector instead of a single object.

Recommendation

We recommend adjusting both error messages to describe the source of the error and to
unify the attributes emitted in events in the indicated functions.

Status: Resolved

16. Remove debugging messages

Severity: Informational

The codebase contains several debugging messages, e.g. using deps.api .debug. Itis best
practice to remove these debug messages before releasing the code in production.

Recommendation

We recommend removing the following debug statements (locations based on phase 2 code
freeze):

contracts/core/mailbox/src/execute.rs:50
contracts/core/mailbox/src/execute.rs:235

°
°
e contracts/isms/multisig/src/query.rs:24

e contracts/isms/routing/src/contract.rs:84

Status: Resolved

17. Remove duplicated code

Severity: Informational

The enroll validators function in
contracts/isms/multisig/src/execute.rs:77-110 utilizes duplicated code to the
definition of enroll validators from the same file.

Recommendation
We recommend removing the duplicated function and instead importing the existing one.

Status: Resolved

20

18. Unused events

Severity: Informational
There are several events in the codebase that are currently unused:

Pausedin contracts/hooks/aggregate/src/error.rs
RouteNotFound in contracts/isms/aggregate/src/error.rs

OwnershipTransferNotStarted and
OwnershipTransferAlreadyStarted in
contracts/isms/multisig/src/error.rs

® emit init transfer ownership, emit finish transfer ownership
and emit revoke transfer ownership in

contracts/isms/multisig/src/event.rs
e InsufficientFunds and MessageNotFound in
contracts/core/mailbox/src/error.rs

Recommendation
We recommend using the above events or removing their definitions.

Status: Resolved

19. Mailbox should explicitly block same domain dispatch messages

Severity: Informational

The dispatch function in contracts/core/mailbox/src/execute.rs:161 does
not explicitly block messages where the destination domain is the same as the local domain.
While this does not pose any security concerns because the dispatch messages cannot cause
any harm to the contracts it may negatively impact user experience.

Recommendation
We recommend enforcing that the destination domain is different from the local domain.

Status: Acknowledged

20. Usage of panics for error handling

Severity: Informational

There are several instances of usage of the expect and unwrap functions for error handling
in the codebase.

21

The usage of expect and unwrap is generally discouraged because they raise panics
without a user-friendly error message. Panics also causes the wasm execution to abort, which
does not allow handling the panic from the calling context.

Recommendation

We recommend returning errors with meaningful error messages rather than using panics,
which will increase the user experience and maintainability of the codebase.

Status: Resolved

21. Lack of attached funds may cause inefficiencies

Severity: Informational

The mailbox contract contains a get required value function in
contracts/core/mailbox/src/execute.rs:27-72 which is called by the
dispatch function in line 167. The returned values determine the amount of funds attached
to the PostDispatch messages that are sent to hooks and relayers.

If no funds have been attached to the call, line 41 returns None values which will result in
messages without attached funds, even if that is a requirement. This will cause the transaction
to fail at a later stage, unnecessarily wasting gas. Similarly, line 62 returns the received funds
in case they are less than the required funds which will cause a failure.

Recommendation
We recommend returning an error in the affected lines to remove inefficiencies.

Status: Resolved

22. Storage elements are not all available through queries

Severity: Informational

The va contract does not expose the HRP, MATLBOX, and LOCAL DOMAIN storage state
values through smart queries in contracts/core/va/src/contract.rs:75-82. This
forces users and other contracts to perform a raw query to read the stored value, tying their
code to the current implementation of the va contract, which is error-prone.

Recommendation
We recommend exposing a smart query that returns the above-mentioned elements.

Status: Partially Resolved

22

23. Potentially misleading attribute emitted

Severity: Informational

Inthe instantiate functionin contracts/warp/native/src/contract.rs:80, the
denom attribute for a bridged denom may be misleading. The function is creating a
tokenfactory token which has a different format and the denom emitted will only be the
token’s subdenom. The correct formatis factory/{creator address}/{subdenom}.

Recommendation
We recommend emitting the full tokenfactory denom for bridged tokens.

Status: Resolved

24. Remove unused config for Multisig ISM

Severity: Informational

The Config structin contracts/isms/multisig/src/state.rs: 6 is defined butitis
not used anywhere in the contract. It is best practice to remove unused code.

Recommendation

We recommend removing the Config struct in
contracts/isms/multisig/src/state.rs:6.

Status: Resolved

25. Empty attributes

Severity: Informational

The Set execute message in contracts/isms/routing/src/contract.rs:68
currently returns empty attributes. It is best practice to return descriptive attributes to reflect
the state changes being made.

Recommendation

We recommend emitting attributes in

contracts/isms/routing/src/contract.rs:68.

Status: Resolved

23

26. Fix spelling errors

Severity: Informational

In contracts/igps/core/src/query.rs: 19, the beneficiary variable is misspelled as
“beneficairy”. Additionally, in contracts/core/va/src/contract.rs:159 and 162
“REPLAY_PROTECITONS” is misspelled.

Recommendation
We recommend fixing the spelling errors mentioned above.

Status: Resolved

27. “Migrate only if newer” pattern is not followed

Severity: Informational

The contracts within the scope of this audit are currently migrated without regard to their
version. This can be improved by adding validation to ensure that the migration is only
performed if the supplied version is newer.

Recommendation

We recommend following the “migrate only if newer” pattern defined in the CosmWasm
documentation.

Status: Acknowledged

28. Usage of vulnerable dependencies

Severity: Informational

The codebase utilizes packages with known vulnerabilities. As reported in
https://r .or visories/RUSTSEC-2022- and

https://rustsec.org/advisories/RUSTSEC-2023-0052, the ed25519-dalek and webpki
crates are affected by issues of high impact.

These vulnerabilities are not directly exploitable in a CosmWasm smart contract and do not
affect any of the current code, but we note this as an informational finding to raise awareness
for potential risks of using these packages and affected functions in future functionality.

24

https://docs.cosmwasm.com/docs/smart-contracts/migration/#migrate-which-updates-the-version-only-if-newer
https://docs.cosmwasm.com/docs/smart-contracts/migration/#migrate-which-updates-the-version-only-if-newer
https://rustsec.org/advisories/RUSTSEC-2022-0093
https://rustsec.org/advisories/RUSTSEC-2023-0052

Recommendation

We suggest verifying that the current code development process does not include any
vulnerable dependencies, as well as periodically checking publicly known issues in the
dependencies used.

Status: Acknowledged

25

