TRAL
BT

Hyperlane V3

Security Assessment (Summary Report)

November 6, 2023

Prepared for:
Abacus Works, core developer for Hyperlane

Hyperlane

Prepared by: Michael Colburn, Damilola Edwards, and Samuel Moelius



About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’'s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Hyperlane V3 Security Assessment
PUBLIC


https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Abacus
Works under the terms of the project statement of work and has been made public at
Abacus Works' request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Hyperlane V3 Security Assessment
PUBLIC


https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 4
Executive Summary 5
Codebase Maturity Evaluation 7
A. Code Maturity Categories 9
B. Code Quality Recommendations 11
C. Fix Review Results 12
D. Supplementary Review Summary 13
E. Supplementary Review Coverage 15
F. Supplementary Review Findings 16

1. ERC165 (standard interface detection) not used 16

2. Use of outdated dependencies and dependency management tools 18
Trail of Bits 3 Hyperlane V3 Security Assessment

PUBLIC



Project Summary

Contact Information
The following project manager was associated with this project:

Brooke Langhorne, Project Manager
brooke.langhorne@trailofbits.com

The following engineering director was associated with this project:

Josselin Feist, Engineering Director, Blockchain
josselin.feist@trailofbits.com

The following consultants were associated with this project:

Michael Colburn, Consultant Damilola Edwards, Consultant
michael.colburn@trailofbits.com damilola.edwards@trailofbits.com

Samuel Moelius, Consultant
samuel.moelius@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

September 20, 2023 Pre-project kickoff call

October 3, 2023 Delivery of report draft

October 3, 2023 Report readout meeting

October 27, 2023 Delivery of fix review draft

October 30, 2023 Delivery of supplementary review draft

October 30, 2023 Supplementary review readout meeting

November 7, 2023 Delivery of summary report

Trail of Bits 4 Hyperlane V3 Security Assessment

PUBLIC


mailto:brooke.langhorne@trailofbits.com
mailto:josselin.feist@trailofbits.com
mailto:michael.colburn@trailofbits.com
mailto:damilola.edwards@trailofbits.com

Executive Summary

Engagement Overview

Abacus Works engaged Trail of Bits to review the security of the changes to the Hyperlane
cross-chain messaging protocol smart contracts, as part of the V3 upgrade in commit
fcfecdf of PR #2733.

A team of two consultants conducted the review from September 25 to September 29,
2023, for a total of two engineer-weeks of effort. With full access to source code and
documentation, we performed static and dynamic testing of the codebase, using
automated and manual processes.

Observations and Impact

This review was focused on the changes introduced in the new version of the Hyperlane
smart contracts. The core Mailbox contract saw heavy modification, with some
functionality having been generalized into a new modular hook pattern. Other changes
were smaller in scope and spread across a number of contracts. Our review focused on
identifying any unhandled edge cases that may have been introduced by these
architectural changes, reviewing the protocol fee logic to check that funds are being
handled properly and cannot be accessed without permission, and exploring how malicious
custom hooks could affect the protocol.

This review was scoped to review only the changes to the Solidity contracts, and as a result,
we did not perform an in-depth review of unmodified contracts or functionality but did
refer to them when necessary to improve our understanding of the overall system. Any
Rust components, such as the relayer and validator codebases, were not in scope for this
review.

Our review did not identify any security issues. In appendix B, we provide a list of code
quality recommendations that could help improve the readability or maintainability of the
code but that are not directly related to any security concerns.

The inclusion of end-to-end tests in the testing suite helps improve confidence in the
functionality of the code and is crucial for a cross-chain protocol like this. The new features
in this version do simplify users’ interactions with the system but also increase the overall
complexity of the codebase, so ensuring documentation is up to date both inside the
contracts and in higher-level documentation will be important going forward.

Recommendations

The codebase could benefit from a comprehensive review of all on-chain and off-chain
components to help ensure correctness. Due to the short timeframe and specific focus of
this engagement, some contract functionality was not reviewed as thoroughly, and none of

Trail of Bits 5 Hyperlane V3 Security Assessment
PUBLIC


https://github.com/hyperlane-xyz/hyperlane-monorepo/pull/2733

the off-chain components were reviewed. Abacus Works should also continue to update
the documentation and investigate how the current configuration for fuzz tests affects
coverage and whether the use of the default number of runs is adequate.

Trail of Bits 6 Hyperlane V3 Security Assessment
PUBLIC



Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic The codebase uses version 0.8 of the Solidity compiler, Satisfactory
which includes built-in overflow detection. The arithmetic
in the system is generally simple, as it primarily relates to
gas and fee calculations and loop counters.

Auditing The contracts have adequate events to facilitate Satisfactory
monitoring, which is critical for a cross-chain messaging
protocol. The user documentation includes instructions
for setting up monitoring for a validator, which consumes
the messages being sent through the protocol.

Authentication / The access control schema used by the system is Satisfactory
Access Controls straightforward. Functions are restricted to specific

contracts, or the contract owner where necessary. The

hook and interchain security module mechanisms (ISMs)

also perform an important role with respect to

authorization in the system. We did not identify any

issues in these mechanisms, but their modular natures

will make proper configuration critical.

Complexity While the new version of the contracts provides a simpler | Moderate
Management interface to users, under the hood there are long call

sequences and complex contract inheritances, which can

make tracing the flow of execution difficult at times. The

modularity of the hook and ISM architecture allows a lot

of flexibility in configuring the system, but this also

inherently increases the complexity. We did not identify

any significant code duplication, and despite the long call

sequences, individual functions are easy to understand.

Trail of Bits 7 Hyperlane V3 Security Assessment
PUBLIC



Decentralization There does not appear to be support for slashing at this Moderate
time, so validators have a high degree of trust in the
system. However, anybody can set up an independent
deployment of the system with a different validator set.
This could provide a viable alternative to untrusting
users, especially for cases outside of token bridging
(which may rely more heavily on network effects).

Documentation The system has good documentation of the current Moderate
version for users and external integrators. Ensure that
this documentation is promptly updated to match the
new version. Much of the codebase has good NatSpec
comment coverage; however, the newer code is
commented less consistently. In particular, there is a
documentation gap around the functionality and
intended use of the various hooks.

Low-Level Assembly use is minimal and most instances are trivial. Satisfactory
Manipulation The assembly block in the MetaProxy library could be

better documented. The contracts leverage libraries for

handling low-level calls, and return values are checked

where appropriate.

Testing and Tests for the codebase are run in Cl, including end-to-end Satisfactory
Verification tests. Any gaps in coverage are highlighted in new pull

requests. The test suite also includes some fuzz tests, but

they are run only for the Foundry default of 256 runs, so

it is unclear if the fuzz tests meaningfully improve test

coverage.
Transaction We did not identify any concerns related to transaction Satisfactory
Ordering ordering in the codebase.
Trail of Bits 8 Hyperlane V3 Security Assessment

PUBLIC



A. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category
Arithmetic
Auditing

Authentication /
Access Controls

Complexity
Management

Cryptography and
Key Management

Decentralization

Documentation

Front-Running
Resistance

Low-Level
Manipulation

Testing and
Verification

Trail of Bits
PUBLIC

Description
The proper use of mathematical operations and semantics
The use of event auditing and logging to support monitoring

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

The presence of comprehensive and readable codebase documentation

The system'’s resistance to front-running attacks

The justified use of inline assembly and low-level calls

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

9 Hyperlane V3 Security Assessment



Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.
Satisfactory Minor issues were found, but the system is compliant with best practices.
Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further Further investigation is required to reach a meaningful conclusion.
Investigation
Required

Trail of Bits 10 Hyperlane V3 Security Assessment

PUBLIC



B. Code Quality Recommendations

The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

e The Indexed contractis inherited by several contracts, but its functionality is not
currently being used. Consider removing it if it is not required.

e Consider renaming the DestinationRecipientRoutingHook contract to be more
in line with the DomainRoutingHook contract it inherits from. Similarly, the
configCustomHook function could be renamed to setHook to align with a similar
function in the DomainRoutingHook contract.

e The ERC5164Hook contract's _quoteDispatch function reverts while the
_quoteDispatch function in other hook contracts returns 0. Update this function
to be consistent with the others, or document why it is expected to behave
differently.

Trail of Bits 11 Hyperlane V3 Security Assessment
PUBLIC



C. Fix Review Results

On October 26, 2023, Trail of Bits reviewed fixes for four issues identified by Abacus Works
concurrent to our review, as well as minor additional changes to the smart contracts. We
reviewed each fix to determine its effectiveness in resolving the associated issue. No
additional issues were identified during this fix review.

The first issue was the inability to unenroll a remote router from the system. This issue was
addressed in PR #2760 by adding the unenrollRemoteRouter function in the Router
contract and a remove function in both the DefaultFallbackRoutingIsmand
DomainRoutingIsm contracts.

The second issue identified an edge case where calls to Mailbox.process unexpectedly
revert if they specify a recipient contract that has a fallback function but does not have an
interchainSecurityModule function to specify a non-default ISM. This issue was
addressed in PR #2767, which updated the logic to check for a nonzero return data length
before attempting to decode the return value as an address.

The third issue identified an edge case where users receive an unclear error message if
they include insufficient payment with their call to Mailbox.dispatch, as this triggers an
arithmetic underflow. This issue was addressed in PR #2769 by capping the quoted
payment amount to the amount provided by the caller and deferring the error handling to
the underlying hook that is being underpaid.

The fourth issue was a potential race condition with the
AbstractMessageIdAuthorizedIsm contract's verify function. This issue could allow
an attacker to directly call verify after the authorized entity calls the verifyMessageId
function to mark a message as verified, but before the relayer triggers the call to verify as
part of the expected flow. This would potentially allow the attacker to transfer funds more
times than intended. This issue was addressed in PR #2835 by adding logic to reduce the
outstanding value to be transferred during each call to verify. However, this fix is not yet
included in the tagged pre-release as of the commit listed below.

The remaining code changes mainly consist of reorganizing the directory structure of the
contracts, changing visibility of some functions, and making minor simplifications to some
contracts. Full details of the additional changes can be found on the audit-remediations
tagged release at commit d69d76a.

Trail of Bits 12 Hyperlane V3 Security Assessment
PUBLIC


https://github.com/hyperlane-xyz/hyperlane-monorepo/pull/2760
https://github.com/hyperlane-xyz/hyperlane-monorepo/pull/2767
https://github.com/hyperlane-xyz/hyperlane-monorepo/pull/2769
https://github.com/hyperlane-xyz/hyperlane-monorepo/pull/2835
https://github.com/hyperlane-xyz/hyperlane-monorepo/releases/tag/audit-remediations
https://github.com/hyperlane-xyz/hyperlane-monorepo/tree/d69d76a73feabd61d653c99ae42075d733b74bee

D. Supplementary Review Summary

Engagement Overview

Abacus Works engaged Trail of Bits to review the security of the changes to the Hyperlane
cross-chain messaging protocol smart contracts, as part of the V3 upgrade in commit
fcfecdf of PR #2733.

To ensure the changes received sufficient coverage, one consultant performed a
subsequent review from October 25 to October 27, 2023, for a total of three additional
engineer-days of effort. With full access to source code, documentation, and the results of
the September 25-29 review, we performed static and dynamic testing of the codebase,
using automated and manual processes.

Observations and Impact

The system is extremely complex by virtue of being an interchain messaging system. Thus,
it would benefit from a comprehensive review in its entirety.

The need for a comprehensive review is further evidenced by the following events. While
reviewing the changes introduced by fcfecdf, we found a double spend bug not related to
those changes.' Fortunately, the bug was also noticed by Abacus Works, and fixed by PR
#2835. However, based on our understanding of the code, the bug could have been
catastrophic for the protocol.

The V3 audit remediations document suggests that producing helpful revert messages is
preferable to relying on Solidity panics, and we agree. We encourage Abacus Works to
continue this practice, even though the view is not held industry wide.

Recommendations

Based on the findings identified during the security review, Trail of Bits recommends that
Abacus Works take the following steps:

e Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

e Seek a comprehensive review of the code in its entirety. Interchain messaging
systems are complex by their nature. Moreover, we happened upon a potentially

' To elaborate, we ran Slither as we normally do for Solidity audits. Slither produced a false positive
regarding potentially locked ether in the ERC5164Ism contract via the
AbstractMessageIdAuthorizedIsm.verifyMessageId function. While investigating the Slither
report, we noticed the potential double spend bug.

Trail of Bits 13 Hyperlane V3 Security Assessment
PUBLIC


https://github.com/hyperlane-xyz/hyperlane-monorepo/pull/2733
https://github.com/hyperlane-xyz/hyperlane-monorepo/pull/2835
https://github.com/hyperlane-xyz/hyperlane-monorepo/pull/2835
https://github.com/hyperlane-xyz/hyperlane-monorepo/releases/tag/audit-remediations
https://github.com/hyperlane-xyz/hyperlane-monorepo/blob/fcfecdf2505406a7b2fdac6925af78bc8f7c0b58/solidity/contracts/isms/hook/ERC5164ISM.sol#L31-L52
https://github.com/hyperlane-xyz/hyperlane-monorepo/blob/fcfecdf2505406a7b2fdac6925af78bc8f7c0b58/solidity/contracts/isms/hook/AbstractMessageIdAuthorizedIsm.sol#L97-L105

catastrophic bug by accident. These facts suggest a comprehensive review is
needed.

e Continue to prefer informative revert messages over Solidity panics. Doing so
allows one to distinguish anticipated failures (the former case) from unanticipated
failures (the latter case).

Trail of Bits 14 Hyperlane V3 Security Assessment
PUBLIC



E. Supplementary Review Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

e Documentation review. We reviewed the Hyperlane documentation to get an
overview of what the system does and what its main components are. We also
reviewed the V3 audit remediations document, to understand the issues discovered
following the September 25-29 Trail of Bits audit.

e Static analysis. We ran Slither over the codebase and reviewed the results.

e Test coverage analysis. We verified that the project’'s Hardhat and Foundry tests
pass. We also computed their test coverage and looked for obvious gaps.

e Pull request review. We reviewed the pull requests mentioned in the V3 audit
remediations document in attempt to understand how they address the issues
named in that document.

e Manual review. We cursorily reviewed the changes introduced by commit
fcfecdf.

Coverage Limitations

Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

e Interchain messaging/bridging systems are inherently complex. The semantics
of such systems depend upon the semantics of the chains with which they operate.
Since such systems necessarily involve multiple chains, they are more complex than
typical, single-chain blockchain projects.

e Reviewing a diff is inherently limited. Determining whether change introduces a
bug requires an understanding of how the code operates prior to the change.
Without such an understanding, one must make assumptions about how the code
operates.

Trail of Bits 15 Hyperlane V3 Security Assessment
PUBLIC


https://docs.hyperlane.xyz/docs/introduction/readme
https://github.com/hyperlane-xyz/hyperlane-monorepo/releases/tag/audit-remediations
https://github.com/crytic/slither

F. Supplementary Review Findings

1. ERC165 (standard interface detection) not used
Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-HYPERLANE-1

Target: solidity/contracts/client/MailboxClient.sol,
solidity/contracts/hooks/DomainRoutingHook.sol

Description

In several places, an address is cast to an interface without first using ERC165: Standard
Interface Detection to check that the interface is implemented. Assuming an interface is
implemented, when it is not, could lead to undesired behavior or confusing error
messages.

Examples where interface detection could be used appear in figures 1.1 through 1.3. Note
also that the setHook function in figure 1.3 appears to lack an onlyContractOrNull
modifier. However, the problem would become moot if interface detection were used.

63 function setHook(address _hook) public onlyContractOrNull(_hook) onlyOwner {
64 hook = IPostDispatchHook(_hook) ;
65 }

Figure 1.1: Example where ERC165: Standard Interface Detection could be used (1 of 3)
(hyperlane-monorepo/solidity/contracts/client/MailboxClient.sol#63-65)

71 function setInterchainSecurityModule(address _module)

72 public

73 onlyContractOrNull(_module)

74 onlyOwner

75 {

76 interchainSecurityModule = IInterchainSecurityModule(_module);
77 }

Figure 1.2: Example where ERC165: Standard Interface Detection could be used (2 of 3)
(hyperlane-monorepo/solidity/contracts/client/MailboxClient.sol#71-77)

45 function setHook(uint32 destination, address hook) public onlyOwner {
46 hooks[destination] = IPostDispatchHook(hook);
47 ¥
Trail of Bits 16 Hyperlane V3 Security Assessment

PUBLIC


https://eips.ethereum.org/EIPS/eip-165
https://eips.ethereum.org/EIPS/eip-165
https://github.com/hyperlane-xyz/hyperlane-monorepo/blob/fcfecdf2505406a7b2fdac6925af78bc8f7c0b58/solidity/contracts/client/MailboxClient.sol#L63-L65
https://github.com/hyperlane-xyz/hyperlane-monorepo/blob/fcfecdf2505406a7b2fdac6925af78bc8f7c0b58/solidity/contracts/client/MailboxClient.sol#L71-L77

Figure 1.3: Example where ERC165: Standard Interface Detection could be used (3 of 3)
(hyperlane-monorepo/solidity/contracts/hooks/DomainRoutingHook.sol#45-47)

Note: Abacus Works noticed a case where the Mailbox.recipientIsm function would
revert if the recipient did not correctly implement the
ISpecifiesInterchainSecurityModule interface. The problem was fixed by PR #2767.
Similar cases could be averted by using ERC165.

Exploit Scenario

Alice accidentally calls MailboxClient.setInterchainSecurityModule with an
address that is not for ISM. Her mailbox client does not function correctly and produces
confusing error messages. Time and effort are wasted trying to diagnose the problem.

Recommendations

Short term, adjust the code in figures 1.1 through 1.3 to use ERC165: Standard Interface
Detection. Doing so will help to catch cases where the functions are called with contracts
that do not implement the required interfaces.

Long term, regularly test your code with invalid inputs, including contracts that do not
implement the required interfaces. Doing so will help to ensure that such cases are
handled correctly, and that useful error messages are produced.

Trail of Bits 17 Hyperlane V3 Security Assessment
PUBLIC


https://github.com/hyperlane-xyz/hyperlane-monorepo/blob/fcfecdf2505406a7b2fdac6925af78bc8f7c0b58/solidity/contracts/hooks/DomainRoutingHook.sol#L45-L47
https://github.com/hyperlane-xyz/hyperlane-monorepo/blob/fcfecdf2505406a7b2fdac6925af78bc8f7c0b58/solidity/contracts/Mailbox.sol#L390-L410
https://github.com/hyperlane-xyz/hyperlane-monorepo/blob/fcfecdf2505406a7b2fdac6925af78bc8f7c0b58/solidity/contracts/interfaces/IInterchainSecurityModule.sol#L36-L41
https://github.com/hyperlane-xyz/hyperlane-monorepo/pull/2767

2. Use of outdated dependencies and dependency management tools
Severity: Undetermined Difficulty: Undetermined
Type: Patching Finding ID: TOB-HYPERLANE-2

Target: .yarnrc.yml, yarn.lock

Description
The project uses an old version of Yarn, and an old version of the OpenZeppelin contracts.
Use of outdated software could mean bug fixes are missed.

The project uses Yarn version 3.2.0, as shown in figure 2.1. The most recent version of Yarn
in the 3.2.* series is 3.2.4, and in the 3.*.* series is 3.4.1.

11 yarnPath: .yarn/releases/yarn-3.2.0.cjs

Figure 2.1: Yarn version the project is pinned to (version 3.2.0)
(hyperlane-monorepo/.yarnrc.yml#11)

Similarly, the project uses OpenZeppelin contracts version 4.8.0, as shown in figure 2.2. The
most recent version of the contracts in the 4.8.* series is 4.8.3, and in the 4.*.* series is
4.9.3.

4892 "@openzeppelin/contracts@npm:*4.8.0":

4893 version: 4.8.0

4894 resolution: "@openzeppelin/contracts@npm:4.8.0"
4895 checksum:

dfab51a7f91735cfb1e94dd5074736b0dac0207e4ebf26eb46b32defd3b67adce5a36b248daa7b841¢c21
be74863c1e37cf92ed194a9c36d3f8c5326d1a24242a

4896 languageName: node

4897 linkType: hard

Figure 2.2: OpenZeppelin contracts version the project is pinned to (version 4.8.0)
(hyperlane-monorepo/yarn.lock#4892-4897)

Note that the latter problem seems to be related to the former. If one deletes the
.yarnrc.yml file and runs the latest stable version of Yarn (version 1.22.19), the
yarn.lock file is updated to refer to version 4.9.3 of the OpenZeppelin contracts.

Exploit Scenario
A bug is found in version 4.8.0 of the OpenZeppelin contracts. The bug affects Hyperlane.
Mallory exploits Hyperlane, knowing it uses the outdated, vulnerable contracts.

Trail of Bits 18 Hyperlane V3 Security Assessment
PUBLIC


https://yarnpkg.com/advanced/changelog#324
https://yarnpkg.com/advanced/changelog#341
https://github.com/hyperlane-xyz/hyperlane-monorepo/blob/fcfecdf2505406a7b2fdac6925af78bc8f7c0b58/.yarnrc.yml#L11
https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v4.8.3
https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v4.9.3
https://github.com/hyperlane-xyz/hyperlane-monorepo/blob/fcfecdf2505406a7b2fdac6925af78bc8f7c0b58/yarn.lock#L4892-L4897
https://github.com/yarnpkg/yarn/releases/tag/v1.22.19

Recommendations

Short term, unless there is a good reason not to, use the latest stable version of Yarn
(version 1.22.19). For each of Hyperlane’'s immediate dependencies, verify that the most
recent version of the dependency appears in the yarn. lock file. Taking these steps will
help ensure that Hyperlane does not use outdated, vulnerable dependencies.

Long term, regularly run yarn upgrade. Doing so will help ensure that Hyperlane uses
up-to-date dependencies.

Trail of Bits 19 Hyperlane V3 Security Assessment
PUBLIC



