¥ sec3

Security Assessment Report

Hyperlane Sealevel Programs
September 20, 2024

Summary

The sec3 team (formerly Soteria) was engaged to do a thorough security analysis of the

Hyperlane Sealevel Solana smart contract programs.

The artifact of the audit was the source code of the following smart contracts excluding tests

in https://github.com/hyperlane-xyz/hyperlane-monorepo/tree/78a5aea/rust/sealevel

The initial audit was done on commit 78a5aea7181696a62ac412d5686c8253f0b5cf9a of the

following smart contracts and shared utilities in July 2023.

rust/sealevel/programs/mailbox

e rust/sealevel/programs/ism

e rust/sealevel/libraries/ecdsa-signature

e rust/sealevel/libraries/multisig-ism

e rust/sealevel/libraries/hyperlane-sealevel-token

e rust/sealevel/programs/hyperlane-sealevel-token

e rust/sealevel/programs/hyperlane-sealevel-token-collateral
e rust/sealevel/programs/hyperlane-sealevel-token-native

e rust/sealevel/programs/validator-announce

e rust/sealevel/libraries/access-control

e rust/sealevel/libraries/account-utils

e rust/sealevel/libraries/hyperlane-sealevel-connection-client
e rust/sealevel/libraries/interchain-security-module-interface
e rust/sealevel/libraries/message-recipient-interface

rust/sealevel/libraries/serializable-account-meta

The audit revealed 8 issues or questions. This report describes the findings and resolutions in

detail.

https://github.com/hyperlane-xyz/hyperlane-monorepo/tree/78a5aea/rust/sealevel

sec3 Report

Table of Contents

RESULE OVEIVIBW ... 3

FINAINGS 1N DETAIL ..o 4
[L-1] Encodedatainall set_return_data) ...t 4
[L=2] ENable runtime OVEIrfLOW CRHECKSc.ooeeeeeeeeeeee e et seseet e e seee s e eseseans e enennesees 6
[I-1] Duplicated Signatures alloWed ... sse s saeses 7
[I-2] Signature Malle@bility ...ttt 9
[I-3] INCONSISTENT COMMENTS ...ttt 10
[I-4] Create a0 sized account owned by the System_program ... 1
[I-5] TODO CLEANUD oottt ettt a bbb bbb bbbttt ae s sans 12
[I-6] Make the verify in multisig-ism lib more self-contained..........ccoveevererererererenne, 13

Appendix: Methodology and Scope of Work ... 15

sec3 Report

Result Overview

Issue Impact Status
[L-1] Encode data in all set_return_data() Low Resolved
[L-1] Enable runtime overflow checks Low Resolved

[I-1] Duplicated signatures allowed

Informational

Acknowledged

[I-2] Signature malleability Informational ~ Acknowledged
[I-3] Inconsistent comments Informational Acknowledged
[I-4] Create a 0 sized account owned by the system_program Informational Acknowledged
[I-5] TODO cleanup Informational Acknowledged
[I-6] Make the verify in multisig-ism lib more self-contained Informational Acknowledged

Findings in Detail

[L-1] Encode data in all set_return_data()

The data in the following set_return_data may have trailing zeros. It's recommended to

encode them too.

/* sealevel/programs/mailbox/src/processor.rs */
678 | set_return_data(id.as_ref());

/* sealevel/programs/mailbox/src/processor.rs */
702 | set_return_data(&count.to_le bytes());

/* sealevel/programs/mailbox/src/processor.rs */
730 | set_return_data(&ret_buf);

/* sealevel/programs/mailbox/src/processor.rs */
750 | set_return_data(root.as_ref());

/* sealevel/programs/mailbox/src/processor.rs */
765 | set_return_data(

766 | &outbox

767 | .owner

768 | .try _to_vec()

769 | .map_err(|err| ProgramError::BorshIoError(err.to_string()))?,
770 |);

/* sealevel/libraries/hyperlane-sealevel-connection-client/src/lib.rs */
018 | fn set_interchain_security module_return_data(&self) {

019 | let ism: Option<Pubkey> = self.interchain_security _module().cloned();
020 | set_return_data(

021 | &ism.try to vec()

022 | .map_err(|err| ProgramError::BorshIoError(err.to_string()))
023 | .unwrap()[..1,

024 |)

025 | }

/* sealevel/programs/ism/multisig-ism-message-id/src/processor.rs */
295 | fn get_validators_and_threshold(
299 |) -> ProgramResult {

301 | set_return_data(

302 | &validators_and_threshold

303 | .try_to_vec()

304 | .map_err(|err| ProgramError::BorshIoError(err.to_string()))?,

305 | iE
307 | }

/* sealevel/programs/ism/multisig-ism-message-id/src/processor.rs */
462 | fn get_owner(program_id: &Pubkey, accounts: &[AccountInfo]) -> ProgramResult {

470 | set_return_data(

471 | &access_control_data

472 | .owner

473 | .try to_vec()

474 | .map_err(|err| ProgramError::BorshIoError(err.to_string()))?,
475 |)g

477 | }

Resolution

This issue has been fixed by PR#2635.

https://github.com/hyperlane-xyz/hyperlane-monorepo/pull/2635

[L-2] Enable runtime overflow checks

The addition at line 363 may overflow.

/* sealevel/programs/mailbox/src/processor.rs */
176 | fn inbox_process(

180 |) -> ProgramResult {

363 | inbox.processed_count += 1;

Consider enabling the runtime overflow check and adding the following in Cargo.toml

[profile.release]
overflow-checks = true

Resolution

This issue has been fixed by PR#4402.

https://github.com/hyperlane-xyz/hyperlane-monorepo/pull/4402

[I-1] Duplicated signatures allowed

When loading signatures from caller-controlled arguments, it doesn't check if there are

duplicated signatures.

/* sealevel/programs/ism/multisig-ism-message-id/src/metadata.rs */
024 | impl TryFrom<Vec<u8>> for MultisigIsmMessageIdMetadata {

027 | fn try_from(bytes: Vec<u8>) -> Result<Self, Self::Error> {

044 | let signature_count = signature_bytes len / SIGNATURE_LENGTH;

045 | let mut validator_signatures = Vec::with_capacity(signature_count);
046 | for i in @..signature_count {

047 | let signature_offset = SIGNATURES_OFFSET + (i * SIGNATURE_LENGTH);
048 | let signature = EcdsaSignature::from_bytes(

049 | &bytes[signature_offset..signature_offset + SIGNATURE LENGTH],
050 |)

051 | .map_err(|_| Error::InvalidMetadata)?;

052 | validator_signatures.push(signature);

053 | }

@55 | ok(Self {

058 | validator_signatures,

059 |)

060 | }

61 | }

However, the signature quorum check is still safe, since validator_index moves once there is

a hit, and there are no duplicated validators due to the check at processor.rs:372.

It's still a good idea to reject duplicated signatures.

/* sealevel/libraries/multisig-ism/src/multisig.rs */
034 | pub fn verify(&self) -> Result<(), MultisigIsmError> {

035 | let signed_digest = self.signed_data.eth_signed _message_hash();
036 | let signed digest bytes = signed_digest.as bytes();

038 | let validator_count = self.validators.len();

039 | let mut validator_index = @;

041 | // Assumes that signatures are ordered by validator

042 | for i in @..self.threshold {

043 | let signer = self.signatures[i as usize]

044 | .secp256kl_recover_ethereum_address(signed_digest_bytes)
045 | .map_err(|_| MultisigIsmError::InvalidSignature)?;

047 | while validator_index < validator_count && signer != self.validators[validator_index] {
048 | validator_index += 1;

049 | }

051 | if validator_index >= validator_count {

7

052 | return Err(MultisigIsmError::ThresholdNotMet);
053 | }

055 | validator_index += 1;

056 | }

058 | 0k(())

259 | }

/* sealevel/programs/ism/multisig-ism-message-id/src/processor.rs */
366 | fn set_validators_and_threshold(

367 | program_id: &Pubkey,

368
369 config: Domained<ValidatorsAndThreshold>,

| accounts: &[AccountInfo],
|

370 |) -> ProgramResult {
I
|

371 // Validate the provided validators and threshold.
372 config.data.validate()?;
Resolution

The team acknowledged this finding.

[I-2] Signature malleability

The solana secp256ki_recover function does not prevent signature malleability. This is in

contrast to the Bitcoin secp256k1 library, which does prevent malleability by default. Solana

accepts signatures with S values that are either in the high order or in the low order, and it is

trivial to produce one from the other.

Reference: https://docs.rs/sol-chainsaw/

However, for the same reason mentioned in [I-1] (the validator_index moves once a hit is

found), it's not possible to take advantage of the signature malleability to break the check.

Consider rejecting signatures with high-order S values to prevent malleability.

/* sealevel/programs/validator-announce/src/processor.rs */

340 | fn verify_ validator_signed_announcement(

341 | announce: &Announcelnstruction,

342 | validator_announce: &ValidatorAnnounce,

343 |) -> Result<(), ProgramError> {

344 | let announcement = Announcement {

345 | validator: announce.validator,

346 | mailbox_address: validator_announce.mailbox.to bytes().into(),
347 | mailbox_domain: validator_announce.local domain,

348 | storage_location: announce.storage_location.clone(),

349 | s

350 | let announcement_digest = announcement.eth_signed message hash();
351 | let signature = EcdsaSignature::from_bytes(&announce.signature[..])
352 | .map_err(|_| ProgramError::from(Error::SignatureError))?;

354 | let recovered_signer = signature

355 | .secp256kl_recover_ethereum_address(&announcement_digest[..])
356 | .map_err(|_| ProgramError::from(Error::SignatureError))?;

358 | if recovered_signer != announcement.validator {

359 | return Err(ProgramError::InvalidAccountData);

360 | }

362 | ok(())

363 |

Resolution

The team acknowledged this finding.

https://docs.rs/sol-chainsaw/latest/sol_chainsaw/solana_sdk/secp256k1_recover/fn.secp256k1_recover.html#signature-malleability

[I-3] Inconsistent comments

At processor.rs:173, N+2..M. should be N+3...M.

At plugin.rs:108 and plugin.rs:217, it's a token transfer instead of burning the tokens.

/* sealevel/programs/mailbox/src/processor.rs */

172 | // N+2. [executable] ISM

173 | // N+2..M. [??] Accounts required to invoke the ISM's Verify instruction.
176 | fn inbox_process(

/* sealevel/programs/hyperlane-sealevel-token-native/src/plugin.rs */

107 | /// Transfers tokens into the program so they can be sent to a remote chain.
108 | /// Burns the tokens from the sender's associated token account.

113 | fn transfer_in<'a, 'b>(

/* sealevel/programs/hyperlane-sealevel-token-collateral/src/plugin.rs */

216 | /// Transfers tokens to the escrow account so they can be sent to a remote chain.
217 | /// Burns the tokens from the sender's associated token account.

224 | fn transfer_in<'a, 'b>(

Resolution

The team acknowledged this finding.

10

[I-4] Createa O sized account owned by the system_program

An account owned by the system program with 0 space is confusing. Potentially, it cannot
prevent the account creation being called again so that this contract may be initialized

several times, which is not the intention of the initialization process.

Although it doesn't seem to have side effects for this initializer, consider allocating more

space instead.

/* sealevel/programs/hyperlane-sealevel-token-native/src/plugin.rs */
073 | fn initialize<'a, 'b>(

074 | program_id: &Pubkey,

075 | system_program: &'a AccountInfo<'b>,

076 | _token_account: &'a AccountInfo<'b>,

077 | payer_account: &'a AccountInfo<'b>,

078 | accounts_iter: &mut std::slice::Iter<'a, AccountInfo<'b>>,

079 |) -> Result<Self, ProgramError> {

080 | // Account 0: Native collateral PDA account.

081 | let native_collateral_account = next_account_info(accounts_iter)?;
082 | let (native_collateral_key, native_collateral_bump) = Pubkey::find_program_address(
083 | hyperlane_token_native_collateral pda_seeds!(),

084 | program_id,

085 | iE

086 | if &native_collateral_key != native_collateral_account.key {

087 | return Err(ProgramtError::InvalidArgument);

088 | }

089 |

090 | // Create native collateral PDA account.

091 | // Assign ownership to the system program so it can transfer tokens.
092 | create_pda_account(

093 | payer_account,

094 | &Rent::get()?,

095 | 0,

096 | &solana_program: :system_program::id(),

097 | system_program,

098 | native_collateral account,

099 | hyperlane_token_native_collateral_pda_seeds!(native_collateral_bump),
100 |)?;

105 | }

Resolution

The team acknowledged this finding.

11

[I-5] TODO cleanup

/* sealevel/libraries/hyperlane-sealevel-token/src/processor.rs */
411 | let message = TokenMessage::read_from(&mut message_reader)

412 | .map_err(|_err| ProgramError::from(Error::TOD0))?;

504 | let message = TokenMessage::read from(&mut message_reader)
505 | .map_err(|_err| ProgramError::from(Error::TODO))?;
Resolution

The team acknowledged this finding.

12

[I-6] Make the verify in multisig-ism lib more self-contained

/* sealevel/libraries/multisig-ism/src/multisig.rs */
034 | pub fn verify(&self) -> Result<(), MultisigIsmError> {

035 | let signed_digest = self.signed_data.eth_signed _message_hash();
036 | let signed digest bytes = signed_digest.as bytes();

037 |

038 | let validator_count = self.validators.len();

039 | let mut validator_index = 9@;

040 |

041 | // Assumes that signatures are ordered by validator

042 | for i in @..self.threshold {

043 | let signer = self.signatures[i as usize]

044 | .secp256kl_recover_ethereum_address(signed_digest_bytes)
045 | .map_err(|_| MultisigIsmError::InvalidSignature)?;

046 |

047 | while validator_index < validator_count && signer != self.validators[validator_index] {
048 | validator_index += 1;

049 | }

050 |

051 | if validator_index >= validator_count {

052 | return Err(MultisigIsmError::ThresholdNotMet);

053 | }

054 |

055 | validator_index += 1;

056 | }

057 |

058 | ok(())

059 | }

The correctness of this code assumes (1) the threshold <= validator_count and (2) there is no

duplications in the validators.

These conditions are currently met because this function is only invoked by multisig-ism-
message-id and the threshold and validators are loaded from a PDA owned by multisig-ism-

message-id. When setting the validators and threshold, the contract does the validations.

/* sealevel/programs/ism/multisig-ism-message-id/src/processor.rs */
239 | fn verify(
244 |) -> ProgramResult {

249 | let validators_and_threshold = validators_and_threshold(program_id, accounts,
message.origin)?;

266 | multisig ism
267 | .verify()

13

268 | .map_err(|err| Into::<Error>::into(err).into())
269 | }

However, as an independent module, it may be a good idea to add the checks and make it

self-contained.

Resolution

The team acknowledged this finding.

14

Appendix: Methodology and Scope of Work

The sec3 (formerly Soteria) audit team, which consists of Computer Science professors and
industrial researchers with extensive experience in Solana smart contract security, program

analysis, testing and formal verification, performed a comprehensive manual code review,

software static analysis and penetration testing.

Assisted by the sec3 Scanner developed in-house, the audit team particularly focused on the

following work items:

e (Check common security issues.

o

o

o

o

e Check program logic implementation against available design specifications.

Missing ownership checks

Missing signer checks

Signed invocation of unverified programs
Solana account confusions

Arithmetic over- or underflows
Numerical precision errors

Loss of precision in calculation
Insufficient SPL-Token account verification
Missing rent exemption assertion
Casting truncation

Did not follow security best practices
Outdated dependencies

Redundant code

Unsafe Rust code

e Check poor coding practices and unsafe behavior.

e The soundness of the economics design and algorithm is out of scope of this work

15

DISCLAIMER

The instance report ("Report") was prepared pursuant to an agreement between
Coderrect Inc. d/b/a sec3 (the "Company") and Abacus Works, Inc (the "Client"). This
Report solely includes the results of a technical assessment of a specific build and/or
version of the Client's code specified in the Report ("Assessed Code") by the Company.
The sole purpose of the Report is to provide the Client with the results of the technical
assessment of the Assessed Code. The Report does not apply to any other version
and/or build of the Assessed Code. Regardless of the contents of the Report, the Report
does not (and should not be interpreted to) provide any warranty, representation or
covenant that the Assessed Code: (i) is error and/or bug free, (ii) has no security
vulnerabilities, and/or (iii) does not infringe any third-party rights. Moreover, the
Report is not, and should not be considered, an endorsement by the Company of the
Assessed Code and/or of the Client. Finally, the Report should not be considered
investment advice or a recommendation to invest in the Assessed Code and/or the

Client.

This Report is considered null and void if the Report (or any portion thereof) is altered

in any manner.

Founded by leading academics in the field of software security and senior industrial
veterans, sec3 (formerly Soteria) is a leading blockchain security company. We are also
building sophisticated security tools that incorporate static analysis, penetration

testing, and formal verification.

At sec3, we identify and eliminate security vulnerabilities through the most rigorous

process and aided by the most advanced analysis tools.

For more information, check out our website and follow us on twitter.

Yz

sec3

https://sec3.dev/
https://twitter.com/Sec3dev

	Result Overview
	Findings in Detail
	[L-1] Encode data in all set_return_data()
	[L-2] Enable runtime overflow checks
	[I-1] Duplicated signatures allowed
	[I-2] Signature malleability
	[I-3] Inconsistent comments
	[I-4] Create a 0 sized account owned by the system_program
	[I-5] TODO cleanup
	[I-6] Make the verify in multisig-ism lib more self-contained
	Appendix: Methodology and Scope of Work

